
1. Story of Jython, written as a Foreword to Jython Essentials (O’Reilly, 2002), by Samuele Pedroni and Noel
Rappin.

CHAPTER 1
The Python Data Model

Guido’s sense of the aesthetics of language design is amazing. I’ve met many fine language
designers who could build theoretically beautiful languages that no one would ever use,
but Guido is one of those rare people who can build a language that is just slightly less
theoretically beautiful but thereby is a joy to write programs in.1

— Jim Hugunin
 Creator of Jython, cocreator of AspectJ, architect of the .Net DLR

One of the best qualities of Python is its consistency. After working with Python for a
while, you are able to start making informed, correct guesses about features that are
new to you.

However, if you learned another object-oriented language before Python, you may have
found it strange to use len(collection) instead of collection.len(). This apparent
oddity is the tip of an iceberg that, when properly understood, is the key to everything
we call Pythonic. The iceberg is called the Python data model, and it describes the API
that you can use to make your own objects play well with the most idiomatic language
features.

You can think of the data model as a description of Python as a framework. It formalizes
the interfaces of the building blocks of the language itself, such as sequences, iterators,
functions, classes, context managers, and so on.

While coding with any framework, you spend a lot of time implementing methods that
are called by the framework. The same happens when you leverage the Python data
model. The Python interpreter invokes special methods to perform basic object oper‐
ations, often triggered by special syntax. The special method names are always written
with leading and trailing double underscores (i.e., __getitem__). For example, the syn‐

3

http://hugunin.net/story_of_jython.html
http://bit.ly/jython-essentials

2. See “Private and “Protected” Attributes in Python” on page 262.
3. I personally first heard “dunder” from Steve Holden. Wikipedia credits Mark Johnson and Tim Hochberg

for the first written records of “dunder” in responses to the question “How do you pronounce __ (double
underscore)?” in the python-list on September 26, 2002: Johnson’s message; Hochberg’s (11 minutes later).

tax obj[key] is supported by the __getitem__ special method. In order to evaluate
my_collection[key], the interpreter calls my_collection.__getitem__(key).

The special method names allow your objects to implement, support, and interact with
basic language constructs such as:

• Iteration
• Collections
• Attribute access
• Operator overloading
• Function and method invocation
• Object creation and destruction
• String representation and formatting
• Managed contexts (i.e., with blocks)

Magic and Dunder
The term magic method is slang for special method, but when
talking about a specific method like __getitem__, some Python
developers take the shortcut of saying “under-under-getitem”
which is ambiguous, because the syntax __x has another special
meaning.2 Being precise and pronouncing “under-under-getitem-
under-under” is tiresome, so I follow the lead of author and teach‐
er Steve Holden and say “dunder-getitem.” All experienced Pytho‐
nistas understand that shortcut. As a result, the special methods
are also known as dunder methods.3

A Pythonic Card Deck
The following is a very simple example, but it demonstrates the power of implementing
just two special methods, __getitem__ and __len__.

Example 1-1 is a class to represent a deck of playing cards.

Example 1-1. A deck as a sequence of cards
import collections

4 | Chapter 1: The Python Data Model

http://bit.ly/1Vm72Mf
https://mail.python.org/pipermail/python-list/2002-September/112991.html
https://mail.python.org/pipermail/python-list/2002-September/114716.html

Card = collections.namedtuple('Card', ['rank', 'suit'])

class FrenchDeck:
 ranks = [str(n) for n in range(2, 11)] + list('JQKA')
 suits = 'spades diamonds clubs hearts'.split()

 def __init__(self):
 self._cards = [Card(rank, suit) for suit in self.suits
 for rank in self.ranks]

 def __len__(self):
 return len(self._cards)

 def __getitem__(self, position):
 return self._cards[position]

The first thing to note is the use of collections.namedtuple to construct a simple class
to represent individual cards. Since Python 2.6, namedtuple can be used to build classes
of objects that are just bundles of attributes with no custom methods, like a database
record. In the example, we use it to provide a nice representation for the cards in the
deck, as shown in the console session:

>>> beer_card = Card('7', 'diamonds')
>>> beer_card
Card(rank='7', suit='diamonds')

But the point of this example is the FrenchDeck class. It’s short, but it packs a punch.
First, like any standard Python collection, a deck responds to the len() function by
returning the number of cards in it:

>>> deck = FrenchDeck()
>>> len(deck)
52

Reading specific cards from the deck—say, the first or the last—should be as easy as
deck[0] or deck[-1], and this is what the __getitem__ method provides:

>>> deck[0]
Card(rank='2', suit='spades')
>>> deck[-1]
Card(rank='A', suit='hearts')

Should we create a method to pick a random card? No need. Python already has a
function to get a random item from a sequence: random.choice. We can just use it on
a deck instance:

>>> from random import choice
>>> choice(deck)
Card(rank='3', suit='hearts')
>>> choice(deck)
Card(rank='K', suit='spades')

A Pythonic Card Deck | 5

>>> choice(deck)
Card(rank='2', suit='clubs')

We’ve just seen two advantages of using special methods to leverage the Python data
model:

• The users of your classes don’t have to memorize arbitrary method names for stan‐
dard operations (“How to get the number of items? Is it .size(), .length(), or
what?”).

• It’s easier to benefit from the rich Python standard library and avoid reinventing
the wheel, like the random.choice function.

But it gets better.

Because our __getitem__ delegates to the [] operator of self._cards, our deck auto‐
matically supports slicing. Here’s how we look at the top three cards from a brand new
deck, and then pick just the aces by starting on index 12 and skipping 13 cards at a time:

>>> deck[:3]
[Card(rank='2', suit='spades'), Card(rank='3', suit='spades'),
Card(rank='4', suit='spades')]
>>> deck[12::13]
[Card(rank='A', suit='spades'), Card(rank='A', suit='diamonds'),
Card(rank='A', suit='clubs'), Card(rank='A', suit='hearts')]

Just by implementing the __getitem__ special method, our deck is also iterable:
>>> for card in deck: # doctest: +ELLIPSIS
... print(card)
Card(rank='2', suit='spades')
Card(rank='3', suit='spades')
Card(rank='4', suit='spades')
...

The deck can also be iterated in reverse:
>>> for card in reversed(deck): # doctest: +ELLIPSIS
... print(card)
Card(rank='A', suit='hearts')
Card(rank='K', suit='hearts')
Card(rank='Q', suit='hearts')
...

6 | Chapter 1: The Python Data Model

4. In Python 2, you’d have to be explicit and write FrenchDeck(object), but that’s the default in Python 3.

Ellipsis in doctests
Whenever possible, the Python console listings in this book were
extracted from doctests to ensure accuracy. When the output was
too long, the elided part is marked by an ellipsis (...) like in the
last line in the preceding code. In such cases, we used the #
doctest: +ELLIPSIS directive to make the doctest pass. If you
are trying these examples in the interactive console, you may omit
the doctest directives altogether.

Iteration is often implicit. If a collection has no __contains__ method, the in operator
does a sequential scan. Case in point: in works with our FrenchDeck class because it is
iterable. Check it out:

>>> Card('Q', 'hearts') in deck
True
>>> Card('7', 'beasts') in deck
False

How about sorting? A common system of ranking cards is by rank (with aces being
highest), then by suit in the order of spades (highest), then hearts, diamonds, and clubs
(lowest). Here is a function that ranks cards by that rule, returning 0 for the 2 of clubs
and 51 for the ace of spades:

suit_values = dict(spades=3, hearts=2, diamonds=1, clubs=0)

def spades_high(card):
 rank_value = FrenchDeck.ranks.index(card.rank)
 return rank_value * len(suit_values) + suit_values[card.suit]

Given spades_high, we can now list our deck in order of increasing rank:
>>> for card in sorted(deck, key=spades_high): # doctest: +ELLIPSIS
... print(card)
Card(rank='2', suit='clubs')
Card(rank='2', suit='diamonds')
Card(rank='2', suit='hearts')
... (46 cards ommitted)
Card(rank='A', suit='diamonds')
Card(rank='A', suit='hearts')
Card(rank='A', suit='spades')

Although FrenchDeck implicitly inherits from object,4 its functionality is not inherited,
but comes from leveraging the data model and composition. By implementing the spe‐
cial methods __len__ and __getitem__, our FrenchDeck behaves like a standard Python
sequence, allowing it to benefit from core language features (e.g., iteration and slicing)

A Pythonic Card Deck | 7

and from the standard library, as shown by the examples using random.choice,
reversed, and sorted. Thanks to composition, the __len__ and __getitem__ imple‐
mentations can hand off all the work to a list object, self._cards.

How About Shuffling?
As implemented so far, a FrenchDeck cannot be shuffled, be‐
cause it is immutable: the cards and their positions cannot be
changed, except by violating encapsulation and handling the
_cards attribute directly. In Chapter 11, that will be fixed by
adding a one-line __setitem__ method.

How Special Methods Are Used
The first thing to know about special methods is that they are meant to be called by the
Python interpreter, and not by you. You don’t write my_object.__len__(). You write
len(my_object) and, if my_object is an instance of a user-defined class, then Python
calls the __len__ instance method you implemented.

But for built-in types like list, str, bytearray, and so on, the interpreter takes a short‐
cut: the CPython implementation of len() actually returns the value of the ob_size
field in the PyVarObject C struct that represents any variable-sized built-in object in
memory. This is much faster than calling a method.

More often than not, the special method call is implicit. For example, the statement for
i in x: actually causes the invocation of iter(x), which in turn may call x.__iter__()
if that is available.

Normally, your code should not have many direct calls to special methods. Unless you
are doing a lot of metaprogramming, you should be implementing special methods
more often than invoking them explicitly. The only special method that is frequently
called by user code directly is __init__, to invoke the initializer of the superclass in
your own __init__ implementation.

If you need to invoke a special method, it is usually better to call the related built-in
function (e.g., len, iter, str, etc). These built-ins call the corresponding special meth‐
od, but often provide other services and—for built-in types—are faster than method
calls. See, for example, “A Closer Look at the iter Function” on page 436 in Chapter 14.

Avoid creating arbitrary, custom attributes with the __foo__ syntax because such names
may acquire special meanings in the future, even if they are unused today.

8 | Chapter 1: The Python Data Model

Emulating Numeric Types
Several special methods allow user objects to respond to operators such as +. We will
cover that in more detail in Chapter 13, but here our goal is to further illustrate the use
of special methods through another simple example.

We will implement a class to represent two-dimensional vectors—that is Euclidean
vectors like those used in math and physics (see Figure 1-1).

Figure 1-1. Example of two-dimensional vector addition; Vector(2, 4) + Vector(2, 1) re‐
sults in Vector(4, 5).

The built-in complex type can be used to represent two-
dimensional vectors, but our class can be extended to represent n-
dimensional vectors. We will do that in Chapter 14.

We will start by designing the API for such a class by writing a simulated console session
that we can use later as a doctest. The following snippet tests the vector addition pictured
in Figure 1-1:

>>> v1 = Vector(2, 4)
>>> v2 = Vector(2, 1)
>>> v1 + v2
Vector(4, 5)

Note how the + operator produces a Vector result, which is displayed in a friendly
manner in the console.

How Special Methods Are Used | 9

The abs built-in function returns the absolute value of integers and floats, and the
magnitude of complex numbers, so to be consistent, our API also uses abs to calculate
the magnitude of a vector:

>>> v = Vector(3, 4)
>>> abs(v)
5.0

We can also implement the * operator to perform scalar multiplication (i.e., multiplying
a vector by a number to produce a new vector with the same direction and a multiplied
magnitude):

>>> v * 3
Vector(9, 12)
>>> abs(v * 3)
15.0

Example 1-2 is a Vector class implementing the operations just described, through the
use of the special methods __repr__, __abs__, __add__ and __mul__.

Example 1-2. A simple two-dimensional vector class
from math import hypot

class Vector:

 def __init__(self, x=0, y=0):
 self.x = x
 self.y = y

 def __repr__(self):
 return 'Vector(%r, %r)' % (self.x, self.y)

 def __abs__(self):
 return hypot(self.x, self.y)

 def __bool__(self):
 return bool(abs(self))

 def __add__(self, other):
 x = self.x + other.x
 y = self.y + other.y
 return Vector(x, y)

 def __mul__(self, scalar):
 return Vector(self.x * scalar, self.y * scalar)

Note that although we implemented four special methods (apart from __init__), none
of them is directly called within the class or in the typical usage of the class illustrated
by the console listings. As mentioned before, the Python interpreter is the only frequent

10 | Chapter 1: The Python Data Model

caller of most special methods. In the following sections, we discuss the code for each
special method.

String Representation
The __repr__ special method is called by the repr built-in to get the string represen‐
tation of the object for inspection. If we did not implement __repr__, vector instances
would be shown in the console like <Vector object at 0x10e100070>.

The interactive console and debugger call repr on the results of the expressions evalu‐
ated, as does the %r placeholder in classic formatting with the % operator, and the !r
conversion field in the new Format String Syntax used in the str.format method.

Speaking of the % operator and the str.format method, you will
notice I use both in this book, as does the Python community at
large. I am increasingly favoring the more powerful str.for
mat, but I am aware many Pythonistas prefer the simpler %, so
we’ll probably see both in Python source code for the foreseea‐
ble future.

Note that in our __repr__ implementation, we used %r to obtain the standard repre‐
sentation of the attributes to be displayed. This is good practice, because it shows the
crucial difference between Vector(1, 2) and Vector('1', '2')—the latter would not
work in the context of this example, because the constructor’s arguments must be num‐
bers, not str.

The string returned by __repr__ should be unambiguous and, if possible, match the
source code necessary to re-create the object being represented. That is why our chosen
representation looks like calling the constructor of the class (e.g., Vector(3, 4)).

Contrast __repr__ with __str__, which is called by the str() constructor and implicitly
used by the print function. __str__ should return a string suitable for display to end
users.

If you only implement one of these special methods, choose __repr__, because when
no custom __str__ is available, Python will call __repr__ as a fallback.

“Difference between __str__ and __repr__ in Python” is a Stack
Overflow question with excellent contributions from Pythonistas
Alex Martelli and Martijn Pieters.

How Special Methods Are Used | 11

http://bit.ly/1Vm7gD1
http://bit.ly/1Vm7j1N

Arithmetic Operators
Example 1-2 implements two operators: + and *, to show basic usage of __add__ and
__mul__. Note that in both cases, the methods create and return a new instance of
Vector, and do not modify either operand—self or other are merely read. This is the
expected behavior of infix operators: to create new objects and not touch their operands.
I will have a lot more to say about that in Chapter 13.

As implemented, Example 1-2 allows multiplying a Vector by a
number, but not a number by a Vector, which violates the com‐
mutative property of multiplication. We will fix that with the spe‐
cial method __rmul__ in Chapter 13.

Boolean Value of a Custom Type
Although Python has a bool type, it accepts any object in a boolean context, such as the
expression controlling an if or while statement, or as operands to and, or, and not. To
determine whether a value x is truthy or falsy, Python applies bool(x), which always
returns True or False.

By default, instances of user-defined classes are considered truthy, unless either
__bool__ or __len__ is implemented. Basically, bool(x) calls x.__bool__() and uses
the result. If __bool__ is not implemented, Python tries to invoke x.__len__(), and if
that returns zero, bool returns False. Otherwise bool returns True.

Our implementation of __bool__ is conceptually simple: it returns False if the mag‐
nitude of the vector is zero, True otherwise. We convert the magnitude to a Boolean
using bool(abs(self)) because __bool__ is expected to return a boolean.

Note how the special method __bool__ allows your objects to be consistent with the
truth value testing rules defined in the “Built-in Types” chapter of The Python Standard
Library documentation.

A faster implementation of Vector.__bool__ is this:
 def __bool__(self):
 return bool(self.x or self.y)

This is harder to read, but avoids the trip through abs, __abs__,
the squares, and square root. The explicit conversion to bool is
needed because __bool__ must return a boolean and or returns
either operand as is: x or y evaluates to x if that is truthy, other‐
wise the result is y, whatever that is.

12 | Chapter 1: The Python Data Model

http://docs.python.org/3/library/stdtypes.html#truth

Overview of Special Methods
The “Data Model” chapter of The Python Language Reference lists 83 special method
names, 47 of which are used to implement arithmetic, bitwise, and comparison opera‐
tors.

As an overview of what is available, see Tables 1-1 and 1-2.

The grouping shown in the following tables is not exactly the same
as in the official documentation.

Table 1-1. Special method names (operators excluded)
Category Method names

String/bytes representation __repr__, __str__, __format__, __bytes__

Conversion to number __abs__, __bool__, __complex__, __int__, __float__, __hash__,
__index__

Emulating collections __len__, __getitem__, __setitem__, __delitem__, __contains__

Iteration __iter__, __reversed__, __next__

Emulating callables __call__

Context management __enter__, __exit__

Instance creation and destruction __new__, __init__, __del__

Attribute management __getattr__, __getattribute__, __setattr__, __delattr__, __dir__

Attribute descriptors __get__, __set__, __delete__

Class services __prepare__, __instancecheck__, __subclasscheck__

Table 1-2. Special method names for operators
Category Method names and related operators

Unary numeric operators __neg__ -, __pos__ +, __abs__ abs()

Rich comparison operators __lt__ >, __le__ <=, __eq__ ==, __ne__ !=, __gt__ >, __ge__ >=

Arithmetic operators __add__ +, __sub__ -, __mul__ *, __truediv__ /, __floordiv__ //, __mod__
%, __divmod__ divmod() , __pow__ ** or pow(), __round__ round()

Reversed arithmetic operators __radd__, __rsub__, __rmul__, __rtruediv__, __rfloordiv__, __rmod__,
__rdivmod__, __rpow__

Augmented assignment
arithmetic operators

__iadd__, __isub__, __imul__, __itruediv__, __ifloordiv__, __imod__,
__ipow__

Bitwise operators __invert__ ~, __lshift__ <<, __rshift__ >>, __and__ &, __or__ |,
__xor__ ^

Overview of Special Methods | 13

http://docs.python.org/3/reference/datamodel.html

Category Method names and related operators

Reversed bitwise operators __rlshift__, __rrshift__, __rand__, __rxor__, __ror__

Augmented assignment bitwise
operators

__ilshift__, __irshift__, __iand__, __ixor__, __ior__

The reversed operators are fallbacks used when operands are
swapped (b * a instead of a * b), while augmented assignments
are shortcuts combining an infix operator with variable assign‐
ment (a = a * b becomes a *= b). Chapter 13 explains both
reversed operators and augmented assignment in detail.

Why len Is Not a Method
I asked this question to core developer Raymond Hettinger in 2013 and the key to his
answer was a quote from The Zen of Python: “practicality beats purity.” In “How Special
Methods Are Used” on page 8, I described how len(x) runs very fast when x is an
instance of a built-in type. No method is called for the built-in objects of CPython: the
length is simply read from a field in a C struct. Getting the number of items in a collection
is a common operation and must work efficiently for such basic and diverse types as
str, list, memoryview, and so on.

In other words, len is not called as a method because it gets special treatment as part of
the Python data model, just like abs. But thanks to the special method __len__, you can
also make len work with your own custom objects. This is a fair compromise between
the need for efficient built-in objects and the consistency of the language. Also from
The Zen of Python: “Special cases aren’t special enough to break the rules.”

If you think of abs and len as unary operators, you may be more
inclined to forgive their functional look-and-feel, as opposed to
the method call syntax one might expect in an OO language. In
fact, the ABC language—a direct ancestor of Python that pio‐
neered many of its features—had an # operator that was the
equivalent of len (you’d write #s). When used as an infix opera‐
tor, written x#s, it counted the occurrences of x in s, which in
Python you get as s.count(x), for any sequence s.

Chapter Summary
By implementing special methods, your objects can behave like the built-in types, en‐
abling the expressive coding style the community considers Pythonic.

14 | Chapter 1: The Python Data Model

https://www.python.org/doc/humor/#the-zen-of-python

A basic requirement for a Python object is to provide usable string representations of
itself, one used for debugging and logging, another for presentation to end users. That
is why the special methods __repr__ and __str__ exist in the data model.

Emulating sequences, as shown with the FrenchDeck example, is one of the most widely
used applications of the special methods. Making the most of sequence types is the
subject of Chapter 2, and implementing your own sequence will be covered in Chap‐
ter 10 when we create a multidimensional extension of the Vector class.

Thanks to operator overloading, Python offers a rich selection of numeric types, from
the built-ins to decimal.Decimal and fractions.Fraction, all supporting infix arith‐
metic operators. Implementing operators, including reversed operators and augmented
assignment, will be shown in Chapter 13 via enhancements of the Vector example.

The use and implementation of the majority of the remaining special methods of the
Python data model is covered throughout this book.

Further Reading
The “Data Model” chapter of The Python Language Reference is the canonical source
for the subject of this chapter and much of this book.

Python in a Nutshell, 2nd Edition (O’Reilly) by Alex Martelli has excellent coverage of
the data model. As I write this, the most recent edition of the Nutshell book is from 2006
and focuses on Python 2.5, but there have been very few changes in the data model since
then, and Martelli’s description of the mechanics of attribute access is the most author‐
itative I’ve seen apart from the actual C source code of CPython. Martelli is also a prolific
contributor to Stack Overflow, with more than 5,000 answers posted. See his user profile
at Stack Overflow.

David Beazley has two books covering the data model in detail in the context of Python
3: Python Essential Reference, 4th Edition (Addison-Wesley Professional), and Python
Cookbook, 3rd Edition (O’Reilly), coauthored with Brian K. Jones.

The Art of the Metaobject Protocol (AMOP, MIT Press) by Gregor Kiczales, Jim des
Rivieres, and Daniel G. Bobrow explains the concept of a metaobject protocol (MOP),
of which the Python data model is one example.

Soapbox
Data Model or Object Model?
What the Python documentation calls the “Python data model,” most authors would say
is the “Python object model.” Alex Martelli’s Python in a Nutshell 2E, and David Beazley’s
Python Essential Reference 4E are the best books covering the “Python data model,” but

Further Reading | 15

http://docs.python.org/3/reference/datamodel.html
http://bit.ly/Python-IAN
http://stackoverflow.com/users/95810/alex-martelli
http://bit.ly/Python-ckbk
http://bit.ly/Python-ckbk

they always refer to it as the “object model.” On Wikipedia, the first definition of object
model is “The properties of objects in general in a specific computer programming
language.” This is what the “Python data model” is about. In this book, I will use “data
model” because the documentation favors that term when referring to the Python object
model, and because it is the title of the chapter of The Python Language Reference most
relevant to our discussions.

Magic Methods
The Ruby community calls their equivalent of the special methods magic methods. Many
in the Python community adopt that term as well. I believe the special methods are
actually the opposite of magic. Python and Ruby are the same in this regard: both em‐
power their users with a rich metaobject protocol that is not magic, but enables users
to leverage the same tools available to core developers.

In contrast, consider JavaScript. Objects in that language have features that are magic,
in the sense that you cannot emulate them in your own user-defined objects. For ex‐
ample, before JavaScript 1.8.5, you could not define read-only attributes in your Java‐
Script objects, but some built-in objects always had read-only attributes. In JavaScript,
read-only attributes were “magic,” requiring supernatural powers that a user of the lan‐
guage did not have until ECMAScript 5.1 came out in 2009. The metaobject protocol
of JavaScript is evolving, but historically it has been more limited than those of Python
and Ruby.

Metaobjects
The Art of the Metaobject Protocol (AMOP) is my favorite computer book title. Less
subjectively, the term metaobject protocol is useful to think about the Python data model
and similar features in other languages. The metaobject part refers to the objects that
are the building blocks of the language itself. In this context, protocol is a synonym of
interface. So a metaobject protocol is a fancy synonym for object model: an API for core
language constructs.

A rich metaobject protocol enables extending a language to support new programming
paradigms. Gregor Kiczales, the first author of the AMOP book, later became a pioneer
in aspect-oriented programming and the initial author of AspectJ, an extension of Java
implementing that paradigm. Aspect-oriented programming is much easier to imple‐
ment in a dynamic language like Python, and several frameworks do it, but the most
important is zope.interface, which is briefly discussed in “Further Reading” on page
342 of Chapter 11.

16 | Chapter 1: The Python Data Model

http://en.wikipedia.org/wiki/Object_model
http://en.wikipedia.org/wiki/Object_model
https://docs.python.org/3/reference/datamodel.html
http://docs.zope.org/zope.interface/

